Reidemeister-Bewegungen
In der Knotentheorie, einem Teilgebiet der Topologie, bezeichnet man als Reidemeister-Bewegungen, benannt nach Kurt Reidemeister, drei lokale Bewegungen von Knotendiagrammen. Zwei Knotendiagramme stellen genau dann denselben (zahmen) Knoten dar, wenn sie sich durch eine Folge von Reidemeister-Bewegungen ineinander überführen lassen. Die gleiche Aussage gilt für Verschlingungsdiagramme (mehrere Komponenten). Die drei Reidemeister-Bewegungen entsprechen lokal den rechts abgebildeten Bewegungen, der Rest des Diagramms bleibt unverändert. Außerdem sind planare Isotopien des Diagramms zulässig.
Typ I | Typ II |
Typ III |
Knoteninvarianten werden in der sogenannten kombinatorischen Knotentheorie durch Invarianten von Knotendiagrammen definiert. Um zu beweisen, dass es sich tatsächlich um eine Knoteninvariante handelt, genügt es, die Invarianz unter Reidemeister-Bewegungen zu überprüfen.
Sie wurden unabhängig von James W. Alexander und Garland Briggs gefunden.
Literatur
- Kurt Reidemeister, Elementare Begründung der Knotentheorie, Abh. Math. Sem. Univ. Hamburg 5 (1927): 24–32, doi:10.1007/BF02952507, MR 3069462
- James W. Alexander; G. B. Briggs, On types of knotted curves. Ann. of Math. (2) 28 (1926/27), no. 1–4, 562–586.
- Burde, Gerhard; Zieschang, Heiner. Knots. Second edition. de Gruyter Studies in Mathematics, 5. Walter de Gruyter & Co., Berlin, 2003. xii+559 pp. ISBN 3-11-017005-1