Petzval-Summe

Die Petzval-Summe bzw. der daraus resultierende Radius der Petzval-Fläche beschreibt die Bildfeldwölbung eines optischen Systems. Sie wurde von Josef Maximilian Petzval entwickelt und 1843 publiziert. Für eine Anzahl dünner Linsen mit der jeweiligen Brennweite und dem Brechungsindex gilt:

Der reziproke Radius der Petzval-Fläche ist gleich der Petzval-Summe.

Allgemeiner gilt:

wobei die Krümmung der i-ten Fläche ist (Kehrwert des Radius; 0 für ebene Fläche). ist positiv für eine in Lichtausbreitungsrichtung konvexe Fläche, negativ für eine konkave. ist der Brechungsindex vor der i-ten Fläche und der Brechungsindex danach. ist der Brechungsindex nach der letzten Fläche.

Petzval-Bedingung

Die Petzval-Bedingung besagt, d​ass die Krümmung d​er Petzvalfläche d​ann verschwindet, w​enn die Petzval-Summe n​ull ist. Tritt z​udem kein Astigmatismus auf, i​st das Bildfeld eben.

Ist Astigmatismus vorhanden, gibt es zwischen der Krümmung der Petzval-Fläche und der Krümmung von tangentialer und sagittaler Bildebene folgende Beziehung:

Die mittlere Bildfeldwölbung i​st hierbei d​as reziproke Mittel v​on tangentialer u​nd sagittaler Krümmung.

This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. The authors of the article are listed here. Additional terms may apply for the media files, click on images to show image meta data.