Parametertransformation

Als Parametertransformation w​ird in d​er Analysis e​ine stetige u​nd streng monotone Abbildung bezeichnet, d​ie den Parameter e​ines Weges ändert.

Formale Definition

Sind und zwei Wege und ist eine stetige und streng monotone Funktion mit

für alle , also ,

so nennt man eine Parametertransformation.[1] Man nennt dann auch eine Umparametrisierung von mittels .[2]

Ist streng monoton wachsend, so wird die Parametertransformation orientierungstreu genannt. Falls die Parametertransformation streng monoton fallend ist, wird sie orientierungsumkehrend genannt.

Wenn und die Umkehrfunktion stetig differenzierbar sind, dann nennt man eine -Parametertransformation.

Eigenschaften

  • Durch die Parametertransformation ändert sich der Weg, nicht jedoch die zugehörige Kurve.[3]
  • Der Weg ist genau dann rektifizierbar wenn rektifizierbar ist. In diesem Fall sind die Weglängen von und gleich.[4]

Literatur

  • Otto Forster: Analysis 2. Differentialrechnung im Rn, gewöhnliche Differentialgleichungen. 8. Auflage. Vieweg+Teubner Verlag, Wiesbaden 2008, ISBN 978-3-8348-0575-1, S. 44–46.

Einzelnachweise

  1. Otto Forster: Analysis 2. Differentialrechnung im Rn, gewöhnliche Differentialgleichungen. 8. Auflage. Vieweg+Teubner Verlag, Wiesbaden 2008, ISBN 978-3-8348-0575-1, S. 44.
  2. Florian Modler, Martin Kreh: Tutorium Analysis 2 und Lineare Algebra 2. Mathematik von Studenten für Studenten erklärt und kommentiert. 2011, ISBN 978-3-8274-2895-0, S. 139.
  3. Otto Forster: Analysis 2. Differentialrechnung im IRn, gewöhnliche Differentialgleichungen. 9. Auflage. Vieweg+Teubner Verlag, 2011, ISBN 978-3-8348-1231-5, S. 48.
  4. Harro Heuser: Lehrbuch der Analysis. Teil 2. 13. Auflage. Teubner Verlag, 2004, ISBN 3-519-62232-7, S. 360.
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. The authors of the article are listed here. Additional terms may apply for the media files, click on images to show image meta data.