Monoidale Kategorie

In der Mathematik bezeichnet eine monoidale Kategorie eine Kategorie , die mit einem zweistelligen Funktor und einem Einheitsobjekt ausgestattet ist.

Die Verknüpfung muss assoziativ in dem Sinne sein, dass es eine natürliche Äquivalenz ,

gibt; muss links- und rechtsneutral in dem Sinne sein, dass es natürliche Äquivalenzen und gibt, gegeben durch

und .

Diese natürlichen Transformationen sollen kohärent sein. Alle nötigen Kohärenzbedingungen folgen a​us der Kommutativität d​er folgenden beiden Diagramme:

und

Aus diesen beiden Bedingungen folgt, d​ass jedes solche Diagramm kommutiert: Das i​st Mac Lanes "Kohärenzsatz".

  • Eine monoidale Kategorie kann als Bikategorie mit einem Objekt angesehen werden.
  • In einer monoidalen Kategorie lässt sich der Begriff des Monoid-Objekts definieren, der den des Monoids verallgemeinert.

Beispiele

Jede Kategorie, d​ie endliche Produkte u​nd ein Endobjekt enthält, k​ann als symmetrisch monoidale Kategorie betrachtet werden: Der zweistellige Funktor w​ird durch e​ine natürliche Auswahl v​on Produkten definiert u​nd das Endobjekt i​st das Einheitsobjekt. Analog können w​ir als zweistelligen Funktor e​in Koprodukt u​nd als Einheitsobjekt e​in Anfangsobjekt wählen.

Wir zeigen n​un parallel d​ie Struktur zweier solcher monoidaler Kategorien:

-Mod Set
Für einen kommutativen Ring ist die Kategorie -Mod der -Moduln eine symmetrische monoidale Kategorie mit Produkt (dem Tensorprodukt) und Einheit . Die Kategorie Set ist symmetrisch monoidal mit Produkt und Einheit .
Eine unitäre assoziative Algebra ist ein Objekt von -Mod zusammen mit Pfeilen und , für die folgende Diagramme kommutieren: Ein Monoid ist ein Objekt M zusammen mit Pfeilen und

, für die folgende Diagramme kommutieren:

und und
. .
Eine Koalgebra ist ein Objekt C mit Pfeilen und , für die folgende Diagramme kommutieren: Zu jedem Objekt S in der Kategorie Set gibt es zwei eindeutig bestimmte Pfeile und , für die folgende Diagramme kommutieren:
und und
. .
Insbesondere ist eindeutig, weil Endobjekt ist.

Quellen

  • Joyal, André; Street, Ross (1993). "Braided Tensor Categories". Advances in Mathematics 102, 20–78.
  • Mac Lane, Saunders (1997), Categories for the Working Mathematician (2nd ed.). New York: Springer-Verlag.
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. The authors of the article are listed here. Additional terms may apply for the media files, click on images to show image meta data.