Isomorphiesatz
Die Isomorphiesätze sind zwei mathematische Sätze, die Aussagen über Gruppen machen. Sie lassen sich auch auf komplexere algebraische Strukturen übertragen und sind somit ein wichtiges Resultat der universellen Algebra. Die Isomorphiesätze sind eine direkte Folgerung aus dem Homomorphiesatz der entsprechenden algebraischen Struktur.
Manchmal wird der Homomorphiesatz als erster Isomorphiesatz bezeichnet. Die unten angegebenen Sätze heißen dann dementsprechend zweiter bzw. dritter Isomorphiesatz.
Gruppentheorie
Erster Isomorphiesatz
Es seien eine Gruppe, ein Normalteiler in und eine Untergruppe von . Dann ist auch das Komplexprodukt eine Untergruppe von , ist ein Normalteiler in und die Gruppe ist ein Normalteiler in . Es gilt:
Dabei bezeichnet die Isomorphie von Gruppen.
Der Isomorphismus, der dabei üblicherweise gemeint ist, wird als kanonischer Isomorphismus bezeichnet. Er wird gemäß dem Homomorphiesatz von der surjektiven Abbildung
induziert, denn es gilt offenbar
- .
Aus dem ersten Isomorphiesatz erhält man als Spezialfall die anschauliche Aussage, dass man genau dann mit "erweitern" darf, wenn .
Zweiter Isomorphiesatz
Es seien eine Gruppe, ein Normalteiler in und eine Untergruppe von , die Normalteiler in ist. Dann gilt:
In diesem Fall kann man kanonische Isomorphismen in beide Richtungen angeben, einerseits induziert durch
andererseits durch
Anschaulich ausgedrückt besagt der zweite Isomorphiesatz, dass man "kürzen" darf.
Ringe
In angepasster Form gelten die Isomorphiesätze auch für Ringe:
Erster Isomorphiesatz
Es seien ein Ring, ein Ideal von und ein Unterring von . Dann ist die Summe ein Unterring von und der Schnitt ein Ideal von . Es gilt:
Dabei bezeichnet die Isomorphie von Ringen.
Zweiter Isomorphiesatz
Es seien ein Ring, zwei Ideale von . Dann ist ein Ideal von . Es gilt:
Vektorräume, abelsche Gruppen oder Objekte einer beliebigen abelschen Kategorie
Es seien
- Vektorräume über einem Körper
- oder abelsche Gruppen
- oder allgemeiner Moduln über einem Ring
- oder ganz allgemein Objekte einer abelschen Kategorie.
Dann gilt:
Auch hier steht das Symbol für die Isomorphie der entsprechenden algebraischen Strukturen bzw. Objekte in der jeweiligen Kategorie.
Die kanonischen Isomorphismen sind eindeutig dadurch bestimmt, dass sie mit den beiden kanonischen Pfeilen von bzw. kompatibel sind.
Eine weitreichende Verallgemeinerung der Isomorphiesätze liefert das Schlangenlemma.
Literatur
- Siegfried Bosch: Algebra. 8. Auflage. Springer, Berlin/Heidelberg 2013, ISBN 978-3-642-39566-6, Kapitel 1.2.
- Christian Karpfinger, Kurt Meyberg: Algebra. 3. Auflage. Springer, Berlin/Heidelberg 2013, ISBN 9783827430113, Kapitel 4.6.
Weblinks
- matheplanet.com: Gruppenzwang IV. – Ausführliche Erklärungen und Beweise der Isomorphiesätze