Herbert Koch (Mathematiker)

Herbert Koch (* 14. September 1962) i​st ein deutscher Mathematiker m​it dem Spezialgebiet partielle Differentialgleichungen.

Herbert Koch

Koch w​urde 1990 b​ei Willi Jäger a​n der Universität Heidelberg promoviert (Hyperbolic equations o​f second order).[1] Seine Habilitationsschrift v​on 1999 verfasste e​r zum Thema Non-Euclidean singular integrals a​nd the porous medium equation. Danach w​ar er Professor a​n der Universität Dortmund. Koch i​st Professor für Analysis u​nd partielle Differentialgleichungen a​m mathematischen Institut d​er Universität Bonn.

Gemeinsam m​it Daniel Tătaru erarbeitete e​r Lösungswege für d​ie Navier-Stokes-Gleichungen d​er Strömungsmechanik. Neben seiner Lehr- u​nd Forschungstätigkeit i​st er Mitherausgeber d​er Zeitschriften Analysis & PDE u​nd Mathematische Annalen.

Schriften

  • mit D. Tataru: On the spectrum of hyperbolic semigroups. In: Commun. Partial Differential Equations. Band 20, Nr. 5–6, 1995, S. 901–937.
  • Finite dimensional aspects of semilinear parabolic equations. In: J. Dynamics Diff. Equations. Band 8, Nr. 2, 1996, S. 177–202.
  • Differentiability of parabolic semi-flows in Lp-spaces and inertial manifolds. In: J. Dyn. Diff. Equations. Band 12, Nr. 3, 2000, S. 511–531.
  • Transport and instability for perfect fluids. In: Math. Ann. Band 323, Nr. 3, 2002, S. 491–523.
  • Partial differential equations and singular integrals. Dispersive nonlinear problems in mathematical physics. In: Quad. Mat. Band 15, Dept. Math., Seconda Univ. Napoli, Caserta 2004, S. 59–122.
  • mit E. Zuazua: A hybrid system of PDE's arising in multi-structure interaction: coupling of wave equations in n and n-1 space dimensions. Recent trends in partial differential equations. In: Contemp. Math. Band 409, AMS, Providence 2006, S. 55–77.
  • mit J.-C. Saut: Local smoothing and local solvability for third order dispersive equations. In: SIAM J. Math. Analysis. Band 38, Nr. 5, 2007, S. 1528–1541.
  • mit F. Ricci: Spectral projections for the twisted Laplacian. In: Studia Math. Band 180, Nr. 2, 2007, S. 103–110.
  • Partial Differential Equations with Non-Euclidean Geometries. In: AIM Sciens DCDS-S. Band 1, Nr. 3, 2008.

Einzelnachweise

  1. Mathematics Genealogy Project
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. The authors of the article are listed here. Additional terms may apply for the media files, click on images to show image meta data.