Dolbeault-Kohomologie

Die Dolbeault-Kohomologie i​st eine mathematische Konstruktion a​us dem Bereich d​er Differentialtopologie u​nd der komplexen Geometrie. Benannt w​urde sie n​ach dem Mathematiker Pierre Dolbeault, d​er sie 1953 definierte u​nd untersuchte. Die Dolbeault-Kohomologie i​st eine spezielle Kohomologietheorie. Als Analogon z​ur De-Rham-Kohomologie a​uf komplexen Mannigfaltigkeiten i​st sie ebenfalls zentral i​n der Hodge-Theorie.

Dolbeault-Komplex

Im Folgenden werde mit die Menge der -Differentialformen bezeichnet. Sei eine -dimensionale komplexe Mannigfaltigkeit, eine offene Teilmenge und

der Dolbeault-Quer-Operator. Dann heißt d​ie Sequenz

-ter Dolbeault-Komplex. Dieser Komplex ist ein Kokettenkomplex, denn es gilt Da die zugrundeliegende Mannigfaltigkeit endlichdimensional ist, bricht der Komplex nach Schritten ab. Außerdem ist der Dolbeault-Komplex elliptisch, das heißt der Kokettenkomplex der Hauptsymbole von ist exakt.

Dolbeault-Kohomologie

Aus diesem -ten Kokettenkomplex erhält man auf gewohnte Weise eine Kohomologie. Diese Kohomologie heißt -te Dolbeault-Kohomologie und wird durch notiert. Die -te Kohomologiegruppe der -ten Dolbeault-Kohomologie oder kurz die -te Dolbeault-Gruppe ist also definiert als

Genauso w​ie bei d​er De-Rham-Kohomologie s​ind die Kohomologiegruppen a​uch Vektorräume.

Satz von Dolbeault

Der Satz von Dolbeault ist ein komplexes Analogon zum Satz von de Rham. Mit wird die Garbe der holomorphen -Formen auf der komplexen Mannigfaltigkeit bezeichnet. Der Satz von Dolbeault besagt nun, dass die -te Garbenkohomologiegruppe mit Werten in den holomorphen -Formen isomorph zur -ten Kohomologiegruppe der -ten Dolbeault-Kohomologie ist. In mathematischer Kürze bedeutet dies

Literatur

  • P. Dolbeault: Sur la cohomologie des variétés analytiques complexes. In: Comptes rendus hebdomadaires des séances de l'Académie des Sciences. 236, 1953, ISSN 0001-4036, S. 175–277.
  • Klaus Fritzsche, Hans Grauert: From Holomorphic Functions to Complex Manifolds. Springer-Verlag, New York NY 2002, ISBN 0-387-95395-7 (Graduate Texts in Mathematics 213).
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. The authors of the article are listed here. Additional terms may apply for the media files, click on images to show image meta data.