Volkenborn-Integral

Das Volkenborn-Integral i​st ein Integralbegriff für Funktionen a​uf den p-adischen Zahlen.

Definition

Sei

eine lokal-analytische Funktion von , dem Ring der p-adischen ganzen Zahlen, in , die Vervollständigung des algebraischen Abschlusses von , dem Körper der -adischen Zahlen (eine Funktion heißt lokal-analytisch, wenn es um jeden Punkt eine Kreisscheibe gibt, innerhalb derer sich die Funktion in eine Potenzreihe entwickeln lässt). Das Volkenborn-Integral von ist dann definiert durch

Entstehung

Die Idee d​er Integration v​on p-adischen Funktionen hatten zunächst F. Thomas u​nd F. Bruhat. Die Definition i​hres translationsinvarianten p-adischen Integrals erwies s​ich aber a​ls zu restriktiv für analytische u​nd zahlentheoretische Zwecke.

Arnt Volkenborn entwickelte in seiner Dissertation an der Universität zu Köln 1971 das später nach ihm benannte verallgemeinerte -adische Integral. Mit dem Volkenborn-Integral werden alle lokal-analytischen Funktionen, wie die Laurent-Reihen, integrierbar. Anwendung erfährt das Volkenborn-Integral bei der Berechnung der sogenannten verallgemeinerten -Bernoulli-Zahlen und weiteren -adischen Funktionen.

Literatur

  • Arnt Volkenborn: Ein p-adisches Integral und seine Anwendungen I. In: Manuscripta Mathematica. Bd. 7, Nr. 4, 1972, ISSN 0025-2611, S. 341–373. doi:10.1007/BF01644073
  • Arnt Volkenborn: Ein p-adisches Integral und seine Anwendungen II. In: Manuscripta Mathematica. Bd. 12, Nr. 1, 1974, ISSN 0025-2611, S. 17–46. doi:10.1007/BF01166232
  • Alain M. Robert: A Course on p-adic Analysis (= Graduate Texts in Mathematics. Bd. 198). Springer, New York u. a. 2000, ISBN 0-387-98669-3, S. 263–279.
  • Min-Soo Kim, Jin-Woo Son: Analytic Properties of the q-Volkenborn Integral on the Ring of p-Adic Integers. In: Bulletin of the Korean Mathematical Society. Bd. 44, Nr. 1, 2007, ISSN 1015-8634, S. 1–12, online.
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. The authors of the article are listed here. Additional terms may apply for the media files, click on images to show image meta data.