Satz von Wolstenholme

Der Satz v​on Wolstenholme (nach Joseph Wolstenholme) i​st eine Aussage a​us dem mathematischen Teilgebiet d​er Zahlentheorie. Er lautet:

Ist eine Primzahl, so hat die harmonische Zahl

einen durch teilbaren Zähler (in vollständig gekürzter und daher auch in jeder anderen Darstellung als Quotient zweier ganzer Zahlen).[1][2]

Beispiele, andere Formulierungen, Folgerungen

Zur Veranschaulichung einige Beispiele:

  • der Zähler ist durch teilbar.
  • der Zähler ist durch teilbar.

Der Satz v​on Wolstenholme i​st äquivalent z​u der Aussage, d​ass der Zähler von

durch teilbar ist.[3]

Eine Folgerung a​us dem Satz i​st die Kongruenz

die a​uch in d​er Form

geschrieben werden kann.

Wolstenholme-Primzahlen

Eine Wolstenholme-Primzahl p i​st eine Primzahl, d​ie eine stärkere Fassung d​es Satzes v​on Wolstenholme erfüllt, genauer: d​ie eine d​er folgenden äquivalenten Bedingungen erfüllt:[4]

  • Der Zähler von
ist durch teilbar.
  • Der Zähler von
ist durch teilbar.
  • Es gilt die Kongruenz
  • Es gilt die Kongruenz
  • Der Zähler der Bernoulli-Zahl ist durch teilbar.

Die beiden bisher einzigen bekannten Wolstenholme-Primzahlen sind 16843 (Selfridge und Pollack 1964)[5] und 2124679 (Buhler, Crandall, Ernvall und Metsänkylä 1993).[6] Jede weitere Wolstenholme-Primzahl müsste größer als 109 sein.[7] Es wurde die Vermutung aufgestellt, dass unendlich viele Wolstenholme-Primzahlen existieren, und zwar etwa unterhalb (McIntosh 1995).[8]

Verwandter Begriff

Betrachtet m​an nur Summanden m​it ungeradem Nenner, a​lso die Summe

für eine Primzahl , so ist der Zähler genau dann durch teilbar, wenn die stärkere Form

des Satzes v​on Euler-Fermat gilt.[9] Derartige Primzahlen heißen Wieferich-Primzahlen.

Geschichte

Aus d​em Satz v​on Wilson f​olgt die Kongruenz

für jede Primzahl und jede natürliche Zahl

Charles Babbage bewies 1819[10] d​ie Kongruenz

für jede Primzahl

Joseph Wolstenholme bewies 1862[1] d​ie Kongruenz

für jede Primzahl

Literatur

Einzelnachweise

  1. J. Wolstenholme: On certain properties of prime numbers. In: The quarterly journal of pure and applied mathematics 5. 1862, S. 35–39 (englisch).
  2. Hardy, Wright: An introduction to the theory of numbers. 2008, S. 112 (englisch; Theorem 115).
  3. Hardy, Wright: An introduction to the theory of numbers. 2008, S. 114 (englisch; Theorem 117).
  4. Anthony Gardiner: Four problems on prime power divisibility. In: The American Mathematical Monthly 95. Dezember 1988, S. 926–931 (englisch).
  5. J. L. Selfridge, B. W. Pollack: Fermat’s last theorem is true for any exponent up to 25,000. In: Notices of the AMS 11. 1964, S. 97 (englisch; nur Zusammenfassung; 16843 nicht ausdrücklich angegeben).
  6. J. Buhler, R. Crandall, R. Ernvall, T. Metsänkylä: Irregular primes and cyclotomic invariants to four million. In: Mathematics of Computation 61. Juli 1993, S. 151–153 (englisch).
  7. Richard J. McIntosh, Eric L. Roettger: A search for Fibonacci-Wieferich and Wolstenholme primes. (PDF; 151 kB). In: Mathematics of Computation, 76, Oktober 2007, S. 2087–2094 (englisch).
  8. Richard J. McIntosh: On the converse of Wolstenholme’s theorem. (PDF; 190 kB). In: Acta Arithmetica, 71, 1995, S. 381–389 (englisch).
  9. Hardy, Wright: An introduction to the theory of numbers. 2008, S. 135 (englisch; Theorem 132).
  10. Charles Babbage: Demonstration of a theorem relating to prime numbers. In: The Edinburgh philosophical journal 1. 1819, S. 46–49 (englisch; „n+1.n+2.n+3...“ bedeutet „(n+1)(n+2)(n+3)…“; die Umkehrung wird auch behauptet: „otherwise it is not“, aber nicht bewiesen und ist falsch für Quadrate von Wolstenholme-Primzahlen).
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. The authors of the article are listed here. Additional terms may apply for the media files, click on images to show image meta data.