Satz von Kirszbraun

In d​er Mathematik i​st der Satz v​on Kirszbraun (auch: Fortsetzungssatz v​on Kirszbraun o​der Satz v​on Kirszbraun-Valentine) e​in Lehrsatz über d​ie Fortsetzbarkeit Lipschitz-stetiger Abbildungen, e​r ist n​ach dem polnischen Mathematiker Mojżesz Dawid Kirszbraun benannt.

Satz

Sei

eine auf einer Teilmenge definierte Lipschitz-stetige Abbildung mit Lipschitz-Konstante , dann gibt es eine Lipschitz-stetige Abbildung

mit derselben Lipschitz-Konstante

und mit

Beispiel

Für kann man explizit definieren durch

für alle .

Dieselbe Formel funktioniert auch für Teilmengen beliebiger metrischer Räume und ist in diesem Kontext als Lemma von McShane bekannt.

Für kennt man keine solche geschlossene Formel.

Verallgemeinerungen

Der Satz v​on Kirszbraun g​ilt auch für Hilberträume, a​ber nicht für beliebige Banachräume.

Seien Hilberträume und eine auf einer Teilmenge definierte Lipschitz-stetige Abbildung, dann gibt es eine Lipschitz-stetige Abbildung mit derselben Lipschitz-Konstanten und mit

Literatur

  • M. Kirszbraun: Über die zusammenziehende und Lipschitzsche Transformationen. Fund. Math. 22 (1935), 77–108. online (PDF; 2,1 MB)
  • F. Valentine: A Lipschitz condition preserving extension for a vector function. Amer. J. Math. 67 (1945), 83–93. online (pdf)
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. The authors of the article are listed here. Additional terms may apply for the media files, click on images to show image meta data.