Satz von Delobel
Der Satz von Delobel (von Claude Delobel) liefert eine einfache Möglichkeit, um zu überprüfen, ob zwei Fragmente einer Relation in einer Datenbank eine verlustfreie Darstellung der Ausgangsrelation sind. Eine Zerlegung von Relationen ist nötig, um das Entstehen von Anomalien zu vermeiden.
Formale Darstellung
Gegeben seien die Relation und ihre Zerlegung mit und .
Wir setzen: und mit .
D ist verlustfrei oder [1] [2]
Nun muss man nur noch die letzte Bedingung überprüfen, was mit Hilfe des APLUS-Algorithmus leicht möglich ist.
Beispiel
Die Ausgangsrelation ist definiert als mit Zerlegungen
und .
Damit verteilen sich die Attribute folgendermaßen:
Menge | Attribute |
---|---|
B | b, c, d |
A | a |
C | e |
Nach Delobel folgt hieraus, dass die Zerlegung verlustfrei ist, wenn gilt oder .
Aus folgt unmittelbar, dass auch .
Quellen
- Wolffried Stucky, Tatyana Podgayetskaya: Datenbanksysteme (Sommersemester 2003): Übungsblatt 1 (PDF; 17 kB) Institut für Angewandte Informatik und Formale Beschreibungsverfahren (AIFB) des Karlsruher Institut für Technologie (KIT). 7. Mai 2003. Abgerufen am 3. Dezember 2021.
- Wolffried Stucky, Tatyana Podgayetskaya: Datenbanksysteme (Sommersemester 2003): Lösung zu Übungsblatt 1 (PDF; 661 kB) Institut für Angewandte Informatik und Formale Beschreibungsverfahren (AIFB) des Karlsruher Institut für Technologie (KIT). 26. Mai 2003. Abgerufen am 3. Dezember 2021.