Satz von Brianchon

Der Satz v​on Brianchon, benannt n​ach dem französischen Mathematiker Charles Julien Brianchon (1783–1864), i​st ein klassischer Lehrsatz d​er ebenen Geometrie.

  • In einem konvexen Sechseck , das einen nicht ausgearteten Kegelschnitt umschreibt (d. h., alle Seiten sind Tangenten des Kegelschnitts), schneiden sich die Diagonalen in einem Punkt , dem Brianchon-Punkt.
Satz von Brianchon

Es handelt s​ich hier u​m die duale Version d​es Satzes v​on Pascal.

3-Tangenten-Ausartung des Satzes von Brianchon

Wie beim Satz von Pascal gibt es für den Satz von Brianchon auch Ausartungen. Dabei lässt man benachbarte Tangenten zusammenfallen und deren Schnittpunkt wird zu einem Kegelschnittpunkt. Bei dem Beispiel im Bild sind 3 Paare von Tangenten zusammengefallen. Dabei entsteht eine Aussage über Inellipsen von Dreiecken. Aus projektiver Sicht kann man weiterhin feststellen: Die beiden Dreiecke und liegen perspektiv. D. h., es gibt eine Zentralkollineation, die das eine Dreieck auf das andere Dreieck abbildet. Nur in Sonderfällen ist diese Zentralkollineation auch eine affine Abbildung (Streckung an einem Punkt), z. B. bei einer Steiner-Inellipse sind beide Dreiecke über eine Streckung am Mittelpunkt, der auch Brianchon-Punkt ist, miteinander verbunden.

Literatur

This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. The authors of the article are listed here. Additional terms may apply for the media files, click on images to show image meta data.