Prinzip der großen Abweichungen
Das Prinzip der großen Abweichungen (kurz LDP von Large Deviation Principle) ist ein Begriff aus der Theorie der großen Abweichungen. Es handelt sich um eine Charakterisierung des Grenzverhaltens einer Folge von Wahrscheinlichkeitsmaßen in Relation zu einer Rate-Funktion (siehe Konvergenzrate).
Definition
Rate-Funktion
Sei ein Topologischer Raum, der Hausdorff ist mit borelscher σ-Algebra . Eine Funktion heißt Rate-Funktion (auch Cramér-Funktion genannt) falls folgendes gilt:
1) ist unterhalbstetig, d. h. es gilt ist geschlossen für jedes .
Man spricht von einer guten Rate-Funktion, falls zusätzlich gilt:
2) sind kompakt.
Prinzip der großen Abweichungen
Sei eine Familie von Wahrscheinlichkeitsmaßen auf . Weiter sei so dass . Dann gilt für das Prinzip der großen Abweichungen, falls eine Rate-Funktion auf existiert mit Rate , so dass folgendes gilt[1]
1) Für alle offenen gilt
- .
2) Für alle abgeschlossenen gilt
- .
Einzelnachweise
- Annals of Probability Volume 36, Number 2, Large deviations by S. R. S. Varadhan. Abgerufen am 3. Februar 2021.