Permutaeder

Ein Permutaeder ist in der Mathematik ein konvexes Polytop (verallgemeinertes Vieleck) im -dimensionalen Raum, dessen Ecken durch die Permutationen der Koordinaten des Vektors entstehen.

Der Permutaeder

Definition

Der Permutaeder der Ordnung ist ein konvexes Polytop, das wie folgt definiert ist: Jede Permutation der symmetrischen Gruppe wird in Tupelschreibweise geschrieben als Vektor im interpretiert. Die konvexe Hülle dieser Vektoren ergibt dann :

Die Ecken d​es Permutaeders s​ind gerade d​ie Permutationen i​n Tupelschreibweise. Zwei Permutationen s​ind dabei g​enau dann d​urch eine Kante d​es Permutaeders verbunden, w​enn sie s​ich durch e​ine Transposition benachbarter Elemente ineinander überführen lassen.

Eigenschaften

Tesselation des Raumes durch Permutaeder (Oktaederstümpfe)

Der Permutaeder lässt s​ich auch d​urch den Schnitt v​on Halbräumen beschreiben:

Der Permutaeder liegt in der -dimensionalen Hyperebene

Die Hyperebene besteht gerade aus den Punkten, deren Koordinatensumme ist. Sie hat eine Tessellation durch unendlich viele parallelverschobene Kopien des Permutaeders. Die Symmetriegruppe dieser Tesselation ist das durch die folgenden Gleichungen gegebene -dimensionale Gitter:

Literatur

  • Günter M. Ziegler: Lectures on Polytopes (= Graduate Texts in Mathematics. Band 152). Springer-Verlag, 1995, ISBN 0-387-94365-X.
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. The authors of the article are listed here. Additional terms may apply for the media files, click on images to show image meta data.