Mladen Bestvina

Mladen Bestvina (* 1959) i​st ein kroatisch-US-amerikanischer Mathematiker, d​er sich m​it geometrischer Gruppentheorie befasst.

Bestvina 1986

Bestvina, d​er 1976 u​nd 1978 a​uf Internationalen Mathematikolympiaden Silbermedaillen gewann, studierte a​n der Universität Zagreb m​it dem Abschluss 1982 u​nd wurde 1984 a​n der University o​f Tennessee b​ei John Joseph Walsh promoviert (Characterizing k-Dimensional Universal Menger Compacta).[1] 1987/88 u​nd 1990/91 w​ar er a​m Institute f​or Advanced Study. Er forschte a​n der University o​f California, Los Angeles u​nd ist Professor a​n der University o​f Utah, a​n der e​r seit 1993 i​st und 2008 Distinguished Professor wurde.

Nach ihm und Geoffrey Mess ist die Bestvina-Mess-Formel in der geometrischen Gruppentheorie benannt und hier ist er auch für den Kombinationssatz von Bestvina und Feighn bekannt, veröffentlichte mit Feighn über die Rips-Maschine (nach Eliyahu Rips) und führte mit Michael Handel train track maps bei der Untersuchung der äußeren Automorphismengruppen der freien Gruppen ein.[2] Mit Handel und Feighn bewies er dass die Tits-Alternative erfüllt. In seiner Dissertation charakterisierte er universelle Menger-Kompakta für alle Dimensionen. Mit Arthur Bartels bewies er die Farrell-Jones-Vermutung für Abbildungsklassengruppen.

1988/89 war er Sloan Research Fellow und 1988 erhielt er einen Presidential Young Investigator Award. 2002 war er eingeladener Sprecher auf dem ICM in Peking (The topology of Out ()). 2012 wurde er Fellow der American Mathematical Society.

Schriften

  • Characterizing k-dimensional universal Menger compacta, Memoirs of the American Mathematical Society 1988
  • mit Mark Feighn: Bounding the complexity of simplicial group actions on trees. Inventiones Mathematicae, Band 103, 1991, S. 449–469
  • mit Geoffrey Mess: The boundary of negatively curved groups. Journal of the American Mathematical Society, Band 4, 1991, S. 469–481
  • mit Mark Feighn: Stable actions of groups on real trees, Inventiones Mathematicae, Band 121, 1995, S. 287–321
  • mit M. Feighn: A combination theorem for negatively curved groups, Journal of Differential Geometry, Band 35, 1992, S. 85–101
  • mit Noel Brady: Morse theory and finiteness properties of groups, Inventiones Mathematicae, Band 129, 1997, S. 445–470
  • mit Mark Feighn, Michael Handel: The Tits alternative for Out(Fn). I. Dynamics of exponentially-growing automorphisms, Annals of Mathematics, Band 151, 2000, S. 517–623, Teil 2, Band 161, 2005, S. 1–59
  • mit Kai-Uwe Bux, Dan Margalit: The dimension of the Torelli group, Journal of the American Mathematical Society, Band 23, 2010, S. 61–105
  • mit Arthur Bartels: The Farrell-Jones Conjecture for mapping class groups, Arxiv 2016

Einzelnachweise

  1. Mladen Bestvina im Mathematics Genealogy Project (englisch) Vorlage:MathGenealogyProject/Wartung/id verwendet
  2. Bestvina, Handel, Train tracks and automorphisms of free groups, Annals of Mathematics, Band 135, 1992, S. 1–51.
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. The authors of the article are listed here. Additional terms may apply for the media files, click on images to show image meta data.