Gary Grest

Gary Stephen Grest (* 22. November 1949 i​n New Orleans)[1] i​st ein US-amerikanischer Physiker.

Grest studierte Physik a​n der Louisiana State University m​it dem Bachelor-Abschluss 1971, d​em Master-Abschluss 1973 u​nd der Promotion 1974. Als Post-Doktorand w​ar er a​n der Rutgers University u​nd 1977/78 Chaim Weitzmann Fellow u​nd Forschungsassistent a​m James Franck Institut d​er Universität Chicago. 1979 b​is 1981 w​ar er Assistant Professor a​n der Purdue University. Ab 1981 w​ar er a​n den Exxon Forschungslaboratorien, a​b 1984 a​ls Senior Staff Physicist. Ab 1998 i​st er a​n den Sandia National Laboratories, w​o er Distinguished Member o​f the Technical Staff ist. Außerdem i​st er Distinguished Sandia National Laboratories Professor a​n der University o​f New Mexico. Seit 2009 i​st er a​uch Adjunct Professor i​n der Fakultät für Chemie d​er Clemson University.

Er untersucht Struktur u​nd Dynamik v​on Polymeren u​nd komplexen Fluiden, granulare Materialien, Emulsionen u​nd Kolloide, z​um Beispiel i​n der Identifizierung typischer Zeit- u​nd Längenskalen d​er jeweiligen Systeme u​nd Vergleich m​it solchen a​us numerischer Simulation.

2008 erhielt e​r den Aneesur-Rahman-Preis[2] für bahnbrechende Entwicklung v​on numerischen Methoden u​nd ihrer Anwendung b​ei der Untersuchung weicher Materie einschließlich Polymeren, Kolloiden u​nd granularen Systemen (Laudatio). Er i​st Fellow d​er American Physical Society (1989), erhielt 2002 d​en Humboldt-Forschungspreis u​nd war Sloan Research Fellow. 2011 erhielt e​r den Polymer Physics Prize. 2008 w​urde er Mitglied d​er National Academy o​f Engineering.

2002 w​urde er Herausgeber v​on Physical Review E.

Schriften (Auswahl)

  • M. H. Cohen, G. S. Grest: Liquid-glass transition, a free-volume approach, Physical Review B, Band 20, 1979, S. 1077
  • G. S. Grest, M. H. Cohen: Liquids, Glasses, and the Glass Transition: A Free-Volume Approach, Advances in Chemical Physics, 1981, S. 455–525
  • M. P. Anderson, D.J. Srolovitz, G. S. Grest, P. S. Sahni: Computer simulation of grain growth—I. Kinetics, Acta Metallurgica, Band 32, 1984, S. 783–791, Teil 2, S. 793–802
  • G. S. Grest, K. Kremer: Molecular dynamics simulation for polymers in the presence of a heat bath, Physical Review A, Band 33, 1986, S. 3682
  • M. O. Robbins, K. Kremer, G. S. Grest: Phase diagram and dynamics of Yukawa systems, J. of Chemical Phywsics, Band 88, 1988, S. 3286–3312
  • M. P. Anderson, G. S. Grest, D. J. Srolovitz: Computer simulation of normal grain growth in three dimensions, Philosophical Magazine B, Band 59, 1989, S. 293–329
  • K. Kremer, G. S. Grest: Dynamics of entangled linear polymer melts: A molecular‐dynamics simulation, The Journal of Chemical Physics, Band 92, 1990, S. 5057–5086
  • P. A. Thompson, G. S. Grest, M. O. Robbins: Phase transitions and universal dynamics in confined films, Phys. Rev. Lett., Band 68, 1992, S. 3448
  • G. S. Grest, M. Murat: Molecular dynamics study of dendrimer molecules in solvents of varying quality, Macromolecules, Band 29, 1996, S. 1278–1285
  • L. E. Silbert, D. Ertas, G. S. Grest, T. C. Halsey, D. Levine, S. J. Plimpton: Granular flow down an inclined plane: Bagnold scaling and rheology, Phys. Review E, Band 64, 2001, S. 051302
  • L. E. Silbert, D. Ertas, G. S. Grest, T. C. Halsey, D. Levine: Geometry of frictionless and frictional sphere packings, Physical Review E, Band 65, 2002, S. 031304
  • R. Everaers, G. S. Grest u. a.: Rheology and microscopic topology of entangled polymeric liquids, Science, Band 303, 2004, S. 823–826
  • J. T. Kalathi, U. Yamamoto, K. S. Schweizer, G. S. Grest, and S. K. Kumar, Nanoparticle Diffusion in Polymer Nanocomposites, Phys. Rev. Lett. 112, 108301 (2014).
  • A. Agrawal, D. Perahia, and G. S. Grest, Clustering Morphology in Ionic Polymers: Molecular Dynamics Simulations, Phys. Rev. E 92, 022601 (2015).
  • K. M. Salerno, A. Agrawal, D. Perahia, and G. S. Grest, Resolving Dynamic Properties of Polymers through Coarse-Grained Computational Studies, Phys. Rev. Lett. 116, 058302 (2016).
  • A. Agrawal, D. Perahia and G. S. Grest, Cluster Morphology-Polymer Dynamics Correlations in Sulfonated Polystyrene Melts: Computational Study, Phys. Rev. Lett. 116, 158001 (2016).
  • G. S. Grest, Communication: Polymer Entanglement Dynamics: Role of Attractive Interactions, J. Chem. Phys. 145, 141101 (2016).
  • S. Cheng and G. S. Grest, Dispersing Nanoparticles in a Polymer Film via Solvent Evaporation, ACS Macro Lett. 5, 694 (2016).
  • D. Aryal, G. S. Grest and D. Perahia, Soft Nanoparticles: Nano Ionic Networks of Structured Ionic Polymers, Nanoscale 9, 2117 (2017).
  • T. Ge, J. T. Kalathi, J. D. Halverson, G. S. Grest and M. Rubinstein, Nanoparticle Motion in Entangled Melts of Non-Concatenated Ring Polymer, Macromolecules 50, 1749 (2017).
  • D. Aryal, A. Agrawal, D. Perahia, and G. S. Grest, Structure and Dynamics Ionic Block Copolymer Melts: Computational Study, Macromolecules 50, 7388 (2017).
  • T. Ge, G. S. Grest, and M. Rubinstein, Nanorheology of Entangled Polymer Melts, Physical Review Letters 120, 057801 (2018).

Einzelnachweise

  1. Lebensdaten nach American Men and Women of Science, Thomson Gale 2004
  2. Aneesur Rahman Preis
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. The authors of the article are listed here. Additional terms may apply for the media files, click on images to show image meta data.