Funktionalableitung

Die Funktionalableitung a​uch Variationsableitung[1] i​st eine verallgemeinerte Richtungsableitung e​ines Funktionals. Ein Funktional i​st dabei e​ine Abbildung, d​ie einer Funktion e​ine Zahl zuordnet. Weil d​er zugrundeliegende Vektorraum i​n diesem Fall a​lso ein Funktionenraum ist, w​ird „in Richtung e​iner Funktion“ abgeleitet. Ein verwandtes Konzept i​st die erste Variation.

Die Funktionalableitung i​st in d​er theoretischen Physik relevant. Dort w​ird sie u​nter anderem i​n der Dichtefunktionaltheorie u​nd der Feldtheorie verwendet.

Definition

Sei eine Untermenge eines topologischen Vektorraumes und mit ein (nicht zwingend lineares) Funktional, dann ist die erste Variation von definiert durch

für eine beliebige Funktion (in einem nicht näher bestimmten Funktionenraum ) mit der einzigen Bedingung, dass auf eindeutig definiert ist für hinreichend kleine . Der Funktionenraum muss kein Unterraum von sein, so lange für alle ist.

Die Funktionalableitung von ist dann definiert durch

.

Diese Definition impliziert, dass die rechte Seite in die Form eines linearen Integraloperators mit Integralkern gebracht werden kann. Dies ist im Allgemeinen für beliebige Funktionale und beliebige nicht möglich. Ein Funktional, für das eine solche Integralform existiert, heißt differenzierbar.[1][2]

Die Funktionalableitung spielt hierbei die Rolle eines Gradienten, was durch die Notation ausgedrückt werden soll.

Eigenschaften

Analog z​ur üblichen Richtungsableitung h​at auch d​ie Funktionalableitung folgende Eigenschaften.

  1. Die Funktionalableitung ist eine lineare Abbildung[2]:
  2. Für ein Produkt aus Funktionalen gilt die Produktregel[2]:
  3. Falls linear ist, dann ist
    .
    Dies ist auch ein Folgerung aus dem Darstellungssatz von Fréchet-Riesz: Weil hier ein lineares Funktional ist, lässt es sich als Skalarprodukt darstellen.
  4. Operiert das Funktional zwischen Teilmengen von Banachräumen und ist die Funktionalableitung von eine lineare Abbildung, dann existiert auch die Fréchet-Ableitung von und stimmt mit überein.[1]

Beispiele

  • Das nicht-lineare Funktional
hat die Funktionalableitung , wie sich mithilfe der Definition zeigen lässt:
.
Da dies für alle Testfunktionen gelten muss, folgt
.
ein Funktional der Dichte .[3] Das zugehörige Austauschpotential ist
.
  • Ein weiteres, mehrdimensionales Beispiel aus der Dichtefunktionaltheorie ist die Elektron-Elektron-Wechselwirkung als Funktional der Dichte :
Es gilt
.
Da dies für alle Testfunktionen gelten muss, folgert man das[2] Ergebnis
.
  • In der Quantenfeldtheorie ist folgendes Beispiel nützlich, um Korrelationsfunktionen aus Zustandssummen zu berechnen. Das Funktional ist
.
Mithilfe des Grenzwerts
zeigt man
.
  • Lässt man auch Distributionen zu, so kann man eine reelle Funktion mithilfe der Delta-Distribution als Funktional schreiben:
.
In diesem Sinne ist[4]
.

Mögliche Voraussetzungen für die Existenz der Funktionalableitung

Die Abbildung

ist ein lineares Funktional. Erfüllt es zusätzliche Voraussetzungen, so kann auf dieses Funktional der Darstellungssatz von Riesz-Markow angewandt werden. Dann gibt es ein Maß , so dass das Funktional als Integral gegen dieses Maß aufgefasst werden kann, das heißt es gibt eine Darstellung

.

Kann m​an zusätzlich d​en Satz v​on Radon-Nikodým anwenden, s​o gibt e​s eine Dichtefunktion, s​o dass

gilt. Diese Dichtefunktion i​st dann d​ie Funktionalableitung.

Siehe auch

Einzelnachweise

  1. Eberhard Engel, Reiner M. Dreizler: Density Functional Theory: An Advanced Course (Theoretical and Mathematical Physics). Springer, 2011, ISBN 978-3-642-14089-1, S. 405–406.
  2. R. G. Parr, W. Yang Appendix A, Functionals. In: Density-Functional Theory of Atoms and Molecules. Oxford University Press, New York 1989, ISBN 978-0195042795, S. 246–254.
  3. Klaus Capelle, A bird's-eye view of density-functional theory, Version 5, November 2006, Gleichung (83)
  4. Eberhard Engel, Reiner M. Dreizler: Density Functional Theory: An Advanced Course (Theoretical and Mathematical Physics). Springer, 2011, ISBN 978-3-642-14089-1, S. 407–408.
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. The authors of the article are listed here. Additional terms may apply for the media files, click on images to show image meta data.