Bethe-Heitler-Formel

Die Bethe-Heitler-Formel i​st eine Formel z​ur Berechnung d​es Wirkungsquerschnitt für d​en Streuprozess e​ines Elektrons a​n einem Atom m​it anschließender Emission e​ines Lichtquants. Sie w​urde von Hans Bethe u​nd Walter Heitler 1934 gefunden.[1][2]

Die Bethe-Heitler-Formel lautet für d​en differentiellen Wirkungsquerschnitt:

Hierbei ist der Impulsübertrag auf das Atom, sind die Impulse des ein- und auslaufendes Elektrons, der Impuls des auslaufendes Photons. Es gilt hierbei:

ist der Formfaktor der Ladungsverteilung, welche auch als Screening-Funktion in dem Zusammenhang bezeichnet wird:

ist dabei die Gesamtladung des Atoms und seine Ladungsverteilung.

ist definiert durch:

mit:

Hierbei sind und die Energie des ein- und auslaufenden Elektrons

  • und sind die Winkel zwischen dem Photonenvektor und den Impulsvektoren bzw. des ein- und auslaufenden Elektrons.
  • Der Winkel ist der Winkel zwischen der und der -Ebene

Die Behandlung der Streuung von Elektronen an Atomen mit Strahlungsemission durch Bethe und Heitler beruht auf der komplett relativistischen Behandlung des Problems mit der Dirac-Gleichung mit der Bornschen Näherung in der 2. Ordnung Störungstheorie. Voraussetzung hierfür sind, dass ist, also Ladungszahl des Atom multipliziert mit der Feinstrukturkonstante. Außerdem müssen die Impulse des ein- und auslaufenden Elektrons wesentlich größer sein als .

Einzelnachweise

  1. Hans Bethe, Walter Heitler: On the stopping of fast particles and on the creation of positive electrons. In: Proc. Roy. Soc. A. Band 146, Nr. 856, 1934, S. 83–112.
  2. Hans. A. Bethe, Edwin E. Salpeter: Quantum Mechanics of One- and Two-Electron-Atoms. Academic Press, New York 1957.
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. The authors of the article are listed here. Additional terms may apply for the media files, click on images to show image meta data.