σ-Subadditivität

Die σ-Subadditivität i​st in d​er Maßtheorie e​ine Eigenschaft e​iner Mengenfunktion, a​lso einer Funktion, d​eren Argumente Mengen sind.

Definition

Gegeben sei ein Mengensystem auf der Grundmenge , also . Eine Abbildung

heißt σ-subadditiv, wenn für jede Folge von Mengen aus und jedes mit gilt, dass

ist.[1] Man beachte, dass es hierbei nicht notwendig ist, zu fordern.

Beispiele

Jedes äußere Maß i​st gemäß Definition σ-subadditiv. Für Prämaße a​uf Ringen (und s​omit auch für Maße a​uf σ-Algebren) ergibt s​ich die σ-Subadditivität a​us der definierenden Eigenschaft d​er σ-Additivität.

Literatur

  • Jürgen Elstrodt: Maß- und Integrationstheorie. 6., korrigierte Auflage. Springer-Verlag, Berlin Heidelberg 2009, ISBN 978-3-540-89727-9, doi:10.1007/978-3-540-89728-6.
  • Achim Klenke: Wahrscheinlichkeitstheorie. 3. Auflage. Springer-Verlag, Berlin Heidelberg 2013, ISBN 978-3-642-36017-6, doi:10.1007/978-3-642-36018-3.

Einzelnachweise

  1. Achim Klenke: Wahrscheinlichkeitstheorie. Springer-Verlag, 2013, ISBN 978-3-642-36018-3, S. 12 (eingeschränkte Vorschau in der Google-Buchsuche).
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. The authors of the article are listed here. Additional terms may apply for the media files, click on images to show image meta data.